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and therapeutic target for PD.
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A preferential dysfunction/loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) accounts
for the main motor symptoms of Parkinson's disease (PD), the most common degenerative movement disorder.
However, the neuronal loss is not stochastic, but rather displays regionally selectivity, indicating the existence of
different DA subpopulations in the SNpc. To identify the underlying molecular determinants is thereby instrumental
in understanding the pathophysiological mechanisms of PD-related neuron dysfunction/loss and offering new
therapeutic targets. Recently, we have demonstrated that aldehyde dehydrogenase 1 (ALDHTAT1) is one such
molecular determinant that defines and protects an SNpc DA neuron subpopulation preferentially affected in PD. In
this review, we provide further analysis and discussion on the roles of ALDH1AT1 in the function and survival of SNpc
DA neurons in both rodent and human brains. We also explore the feasibility of ALDHTAT as a potential biomarker
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Introduction

Parkinson’s disease (PD), clinically manifested with resting
tremor, dyskinesia/akinesia, posture instability, rigidity,
and other motor symptoms [1], results from a preferential
dysfunction/loss of the substantia nigra pars compacta
(SNpc) dopaminergic (DA) neurons [2]. As supporting
evidence, dopamine replacement therapy using the dopa-
mine precursor L-3, 4-dihydroxyphenylalanine (L-DOPA)
has been broadly employed to alleviate the motor symp-
toms [3]. Although L-DOPA is the gold standard PD
therapy, it cannot prevent the progressive loss of SNpc
neurons and becomes less effective at the late stages of
the disease [4]. In addition, some patients respond poorly
to the administration of L-DOPA, while others develop
dyskinesia [5]. To understand why the SNpc DA neurons
are preferentially susceptible to degeneration and how to
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prevent it remain the most challenging questions in PD
research and treatment. Here we discuss recent advances
in the identification of key molecular determinants crit-
ical for the survival of a subpopulation of SNpc DA neu-
rons selectively degenerated in PD.

SNpc regional selectivity in aging and PD
SNpc DA neurons are highly specialized and possess
many distinct morphological and functional properties
[6]. They have long, unmyelinated and highly ramified
axons [7]; use highly reactive dopamine as the transmitter
[8]; and, function as a pace-maker using calcium currents
[6,9]. SNpc DA neurons likely undertake tremendous
stress to support their constant neural activities, to dispose
cytotoxic dopamine metabolites, and to maintain calcium
homeostasis, which likely render them more susceptible to
aging, PD, and other risk factors [6,9,10].

Despite sharing many distinct features as mentioned
above, SNpc DA neurons are not a homogeneous popu-
lation of neurons [11-13]. They seem to organize into
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different subdivisions within the SNpc and display differ-
ential vulnerability during aging and PD processes [11-13].
Based on the pattern of neuronal loss in normal aging and
PD, Fearnley and Lees divide human SNpc into six mor-
phometric regions, including the medial part (DM), lateral
part (DL) and pars lateralis (PL) in the dorsal tier, and the
medial part (VM), intermediate part (VI) and lateral part
(VL) in the ventral tier [12]. It appears that normal aging
mainly affects the DA neurons distributed in the dorsal
tier of SNpc, whereas PD causes additional and more se-
vere loss of DA neurons in the ventral tier, especially the
VL subpopulation [12]. Fearnley and Lees further postu-
late that SNpc DA neurons undergo a biphasic mode of
degeneration in PD comprised of an age-dependent linear
phase and a PD-induced accelerated phase of neuronal
loss [12]. These earlier anatomical observations imply the
existence of distinct molecular determinants that define
and protect SNpc subpopulations selectively affected in
PD. To identify the underlying molecular clues may not
only shed light on the cause of SNpc DA neuronal loss in
PD, but also provide new biomarkers and therapeutic tar-
gets for the treatment of the disease.

ALDH1A1 defines a subpopulation of SNpc DA
neurons in both rodent and human brains

SNpc DA neurons express a selective set of genes encod-
ing proteins critical for the synthesis, transport and deg-
radation of dopamine, including tyrosine hydroxylase
(TH), vesicular monoamine transporter 2 (VMAT?2), dopa-
mine transporter (DAT), and aldehyde dehydrogenase 1
(ALDH1A1) [14]. In contrast to a ubiquitous expression
pattern of TH, VMAT2, and DAT in all SNpc DA neurons,
ALDHI1A1 appears to be expressed only in DA neurons
residing at the ventral tier of rodent SNpc [15]. More-
over, a conserved topographic distribution of ALDH1A1-
positive SNpc DA neurons is also observed in the ventral
tier of human SNpc (Figure 1) [16]. Therefore, based on
the expression of ALDH1A1, SNpc DA neurons can be di-
vided into two subtypes that exhibit different susceptibility
in PD (Figure 1) [16]. ALDH1A1 belongs to a large family
of ALDH genes that consist of 19 members in the human
genome [17]. Interestingly, among all ALDH genes only
Aldhlal is predominantly and highly expressed by the
SNpc DA neurons in the mouse CNS (Figure 2A) [16,18].
The expression of Aldhlal mRNA was also much
higher than any aldehyde reductase (AKR) genes, which
may also involve with the oxidization of dopamine-3, 4-
dihydroxyphenylacetaldehyde (DOPAL) (Figure 2B) [19].
Hence ALDH1A1 may possess some distinct characteris-
tics critical for the function and survival of a subset of
SNpc DA neurons preferentially degenerated in PD. Mean-
while, it is perhaps more accurate to pathologically
characterize PD as caused by a selective loss of ALDH1A1-
positive SNpc DA neurons.
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Figure 1 Selective loss of ALDH1A1-positive subtype nigrostriatal
DA neurons in PD. Cartoons illustrate the distribution of
ALDHTA1-negative (ALDHTA1~, red) and —positive (ALDHTAT™, blue)
DA neurons, as well as ALDH1A1" neurons that lose ALDHTA1
expression (ALDH1AT*=> ALDH1A1~, red with blue outline) in the
SNpc of non-pathology control (NPC) and PD brains with mild and
severe depigmentation. VL: ventral lateral, VM: ventral medial.

ALDH1A1 functions in periphery tissues and SNpc
DA neurons

ALDHI1AL1 proteins exist as homotetramers in the cyto-
sol, and oxidize various cytosolic aldehyde intermediates
into the chemically more inert acidic forms [20]. The
oxidative activity of ALDH1A1 requires the presence of
the co-factor oxidized nicotinamide adenine dinucleotide
(NADY) [17]. ALDH1A1 has been involved in the metabol-
ism of alcohol in the liver and retinol in the eye, brain, and
other tissues [21]. ALDH1A1-deficiency has been indicated
in alcohol-intolerance and cornea opacity [17]. On the
other hand, an abnormal increase of ALDH1A1 has been
observed in certain cancers, while ALDH1A1 inhibitors
have been developed for cancer therapy [17,22].

In the brain, ALDH1AI-mediated production of retin-
oid acid (RA) is required for the differentiation of DA
neurons during embryonic development [23]. The ex-
pression of Aldhlal in the midbrain DA neurons is
under the transcriptional control of pituitary homeobox
3 (Pitx3) and forkhead box protein A1/2 (Foxal/2) [23,24].
A lack of Pitx3 impairs the expression of Aldhlal and the
terminal differentiation of midbrain DA neurons, whereas
a supplement of RA in embryos rescues the developmental
defects caused by Pitx3-deficiency [23]. Since Pitx3 and
Foxal/2 show rather ubiquitous expression pattern in the
midbrain DA neurons, they may not be responsible for the
selective expression of Aldhlal in the SNpc. It would be
interesting to identify additional upstream transcription
factors that regulate the expression of Aldhlal selectively
in a subpopulation of DA neurons.

Additionally, ALDH1A1 also mediates the oxidation of
DOPAL in DA neurons (Figure 3) [20]. Dopamine is
produced in the cytosol before being sequestrated into
the synaptic vesicles by VMAT?2 (Figure 3) [25]. On the
other hand, vesicular dopamine seems to constantly leak
into the cytosol (Figure 3) [26]. Free cytosolic dopamine
may undergo autoxidation to form cytotoxic quinones
and other free radicals (Figure 3) [27]. To remove the
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Figure 2 Expression of Aldh and Akr family genes in the mouse SNpc DA neurons. (A, B) RNA sequencing reveals the expression of Aldh
(A) and Akt (B) family genes in SNpc DA neurons of 12-month-old wild type mice. Two independent sets of SNpc RNA samples were analyzed.
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cytosolic dopamine and its byproducts, monoamine
oxidases (MAOs), ALDHs and AKRs are employed to
degrade cytosolic dopamine and DOPAL into 3, 4-
Dihydroxyphenylacetic acid (DOPAC) and other less re-
active metabolites (Figure 3) [20,26]. DOPAL is highly re-
active and a lack of ALDH1A1 may lead to accumulation
of DOPAL that has been shown to promote cytotoxic
polymerization of PD-related a-synuclein and comprom-
ise the functions of proteins important in the activity and
survival of SNpc DA neurons (Figure 3) [28]. In sup-
port of this notion, exposure of fungicide benomyl, an
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Figure 3 Dopamine metabolism and selective loss of SNpc DA
neurons. Cartoon proposes the accumulation of cytosolic DOPAL
triggers the degeneration of SNpc DA neurons in PD. Tyrosine
hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC)
mediate the synthesis of dopamine from tyrosine (Tyr) in the cytosol.
Cytosolic dopamine is then immediately sequestered into the synaptic
vesicles (SVs) by dopamine transporter VMAT2 for release. DAT mediates
the reuptake of dopamine from extracellular space into the DA
terminals. Leakage of dopamine from SVs also contributes to the
cytosolic dopamine levels. MAO and ALDHTAT are main enzymes for
the degradaﬁon of cytosolic dopamine in DA neurons. A lack of
ALDHTAT may lead to a cytotoxic build-up of DOPAL which triggers
the reactive oxygen species (ROS) production, protein adducts and

a-synuclein aggregation, and eventually leads to cell death.

inhibitor of aldehyde dehydrogenase increases the risk of
PD [29].

Given the importance of ALDH1A1 in dopamine me-
tabolism, why ALDH1A1 is only expressed by a subset
of DA neurons remains an intriguing question. In the
absence of ALDH1A1, other ALDH and AKRs family
proteins likely substitute its role in the oxidation of
DOPAL and other cytosolic aldehyde intermediates. How-
ever, except for ALDH1A1, no other ALDHs or AKRs
are particularly enriched in the SNpc DA neurons, or re-
stricted to any subpopulations (Figure 2A, B) [16] (Allen
Brain Atlas). We speculate the highly selective expression
of ALDHI1A1 in the ventral subpopulation of SNpc DA
neurons may provide extra protection for these neurons
that are preferentially vulnerable in PD [12].

ALDH1A1 contributes to the preferential loss of
ventral SNpc DA neurons in PD

PD brains are featured with a more severe loss of ventral
SNpc DA neurons [12]. One of the common molecu-
lar properties of these neurons is the expression of
ALDHI1AL1 [16]. Correlatively, a more severe loss of ven-
tral ALDH1A1-positive SNpc DA neurons has been ob-
served in the PD cases (Figure 1) [16]. More interestingly,
a significant increase of ALDH1A1-negative DA neurons
in the ventral tier of SNpc is observed in the mild PD
cases compared to the normal controls (Figure 1) [16]. A
likely explanation of this observation is that PD may ini-
tially cause a reduction of ALDH1A1 expression in the
ALDHI1A1l-positive DA neurons prior to the eventual
neuronal loss. Reductions of ALDHIAI mRNA and pro-
tein expression have also been reported in the SNpc of
postmortem PD brains [30-32]. Moreover, in the o-
synuclein transgenic mice both Aldhlal mRNA and pro-
tein levels are also decreased in DA neurons [16]. These
findings suggest that ALDH1AL1 itself is also a pathogenic
target in PD. The reduction of ALDH1A1 expression in
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PD may weaken the protective function of ALDH1A1 in
the ventral tier of SNpc, and predispose these neurons to
degeneration at the later stages of disease. Therefore, a se-
vere loss of ALDH1A1 expression may represent the turn-
ing point for ventral SNpc DA neurons that degenerate in
PD. The expression level and activity of ALDH1A1 may
serve as a useful biomarker to monitor the progression of
the disease.

Mouse ALDH1A1-positive SNpc DA neurons are
more resistant to a-synuclein-induced
neurodegeneration

a-synuclein is a prominent genetic causal factor in the
pathogenesis of PD [33-37]. A potential pathogenic inter-
action between cytosolic dopamine and a-synuclein has
been implicated in the pathogenesis of PD [27,38]. One
of the key pathogenic mechanisms of a-synuclein in DA
neurons is to form cytotoxic protein aggregates that
may impair the synthesis, uptake, and degradation of
dopamine [39-41]. The increased formation of cytotoxic
dopamine quinones and DOPAL, on the other hand,
may further promote a-synuclein aggregation through
polymerization of monomeric a-synuclein [42,43]. This
pathogenic interplay between reactive dopamine deriva-
tives and a-synuclein aggregation may form a vicious
cycle that amplifies their detrimental effects to the DA
neurons [42].

When the PD-related a-synuclein A53T missense mu-
tation is introduced into the midbrain DA neurons, the
resulting Pitx3—tTA:tetO-AS53T bigenic mice develop
profound motor disabilities and robust SNpc DA neuron
loss [41]. Interestingly, the degenerated neurons are
mainly distributed at the dorsal medial tier of SNpc that
lack ALDH1A1 expression [16]. Noticeably, more cyto-
toxic a-synuclein aggregates are present in ALDH1A1-
negative population of SNpc DA neurons in the mutant
mice [16], suggesting that more DOPAL or other react-
ive dopamine intermediates may be present in these
neurons to promote o-synuclein polymerization and ag-
gregation [42,43]. By contrast, the ventral ALDH1A1-
postive SNpc DA neurons contain less a-synuclein
aggregates and appear to resist a-synuclein-induced
neuron loss during the aging process [16], thereby sup-
porting the protective role of ALDH1A1 in these neu-
rons. Correlatively, genetic deletion of Aldhlal gene
exacerbates a-synuclein-induced SNpc DA neuronal loss
in the Aldhlal knockout mice [16]. It is necessary to
point out that the subtypes of the remaining SNpc DA
neurons were not defined in the Aldhlal-deficient mice
due to a lack of molecular markers. Future studies will be
required to identify additional molecular markers for dif-
ferent subtypes of SNpc DA neurons. To directly support
the protective function of ALDH1A1 for DA neurons,
over-expression of ALDHI1A1 selectively ameliorates
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a-synuclein-induced cytotoxicity in the cultured DA neu-
rons [16]. It will be interesting to examine the protective
role of ALDH1A1 in vivo through the overexpression of
ALDHI1AL1 or the use of selective activators. This proposed
study may pave the way for establishing ALDH1A1 as an
important therapeutic target for PD.

ALDH1A?7 is highly homologous to ALDH1A1 and
only exists in mouse but not human genome
There still lacks a pathologically more accurate PD mouse
model that shows progressive loss of ALDH1A1-positive
SNpc DA neurons. Why the mouse ALDH1A1l-postive
SNpc DA neurons are more resistant to a-synuclein-
induced degeneration remains speculative [16]. Although
ALDHI1A1 appears to play an important role in the devel-
opment and maintenance of SNpc DA neurons [16,23],
genetic deletion of Aldhlal fails to produce any overt
motor symptoms or SNpc DA neuron loss in the Aldhlal
knockout mice [44,45]. Other ALDHs or AKRs may com-
pensate for the loss of ALDH1A1 as shown in the Aldhlal
and Aldh2 double knockout mice that develop mild but
statistically significant loss of SNpc DA neurons [45].

Interestingly, when comparing the genomic organization
of mouse and human ALDHIAI, mouse Aldhlal sits
side-by-side with Aldhla7 in chromosome 19, whereas no
corresponding ALDHIA?7 is found in the human genome
(Figure 4A). Mouse ALDHI1A7 proteins share 91% and
84% identical residues with mouse and human ALDH1A1,
respectively, suggesting that ALDH1A1 and ALDH1A7
may have interchangeable functionalities (Figure 4B). The
mouse Aldhlal and Aldhla7 genes are likely derived from
an ancestor gene through gene duplication, an event that
seems not evolutionally conserved between mice and
humans. In the midbrain lysates of Aldhlal homozygous
knockout mice, around 80% reduction of ALDH1A1 pro-
tein expression was detected (Figure 4C). The remaining
20% of proteins likely reflect the expression of ALDH1A7,
since the ALDH1A1l antibody possibly also recognizes
ALDH1A?7 due to the high homology shared by these two
proteins. The presence of ALDH1A7 may thereby provide
extra protection for the SNpc DA neurons in the mouse
brains. Why mice but not human have ALDHI1A?7 is a
mystery. However, ALDH1A7 may provide extra protec-
tion to the SNpc DA neurons in mouse brains.

ALDH1A1 as a biomarker and therapeutic target
in PD

ALDHI1A1 may exert its protective function to SNpc DA
neurons via mitigating the cytotoxicity of DOPAL. A sub-
stantial reduction of ALDH1A1 expression and severe loss
of ALDH1A1l-positive SNpc DA have been observed in
the postmortem PD brains [16,30]. Collaboratively, studies
of postmortem brains show a drop of DOPAC content
in the putamen of PD patients, reflecting the reduced
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Figure 4 ALDH1A?7 is highly homologous to ALDH1A1 in the mouse genome. (A) Diagrams depict the genomic structures of human
ALDHIAT (hALDHIAT) and mouse Aldhlal (mAldhlal) and Aldhla7 (mAldhila7). Arrows point to the direction of transcription. (B) Table shows the
percentage of identical amino acids shared between hALDH1AT, mALDH1A1, and mALDH1A7 proteins. (C) Western blot shows the residual
proteins recognized by an ALDH1A1 antibody in both the midbrain (MB) and striatum of Aldh1ai™" mice.

ALDHI1ALI activity [14]. In addition, gene expression pro-
filing of whole blood samples from 105 PD patients
shows that ALDHIA1 mRNA together with other three
genes are specific indicators for PD diagnosis since no
such changes are found in control as well as Alzhei-
mer’s cases [46]. Although the transcriptional regulation
of ALDHIA1I may differ in SNpc DA neurons and blood
cells, a similar systematic alteration of its expression
might occur in both the CNS and periphery tissues. The
levels of ALDHIAI expression and activity either in the
blood or CSF could serve as biomarkers for the diagnosis
of PD.

The reduction of ALDH1A1 expression in PD might
be employed as a compensatory mechanism to boost the
release of dopamine in the remaining SNpc DA neurons
via slowing down the turnover of dopamine. However, the

undesired consequence of this approach is the resulting
DOPAL-induced cytotoxicity, such as increased oxidative
stress, protein adducts, and a-synuclein aggregation [47].
ALDHI1A1 activation could be applied to suppress the
toxic effects of DOPAL in the PD brains. Previous studies
in cancer research have identified a number of intracellu-
lar signaling pathways that lead to an increase expression
of ALDH1A1 in cancer cells [17]. However, whether SNpc
DA neurons adopt the same pathways in regulating
ALDHIAI mRNA expression remains to be determined.
In addition, it would be important to evaluate the impact
of posttranslational modifications on the expression and
function of ALDH1A1 proteins. The knowledge gained
from these studies may help to design potential thera-
peutic interventions that boost the activity of ALDH1A1
in the PD brains.
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On the other side, a variety of ALDH inhibitors have
been developed to treat cancers, alcohol abuse and other
disorders [17]. Among them, disulfiram, an alcohol-
aversive drug [48], exhibits more potent inhibition of
ALDHI1A1 than ALDH2 and other ALDHs [49]. How-
ever, whether the administration of ALDH1A1 inhibitors
may increase the risk of PD remains to determine. In
addition, it would be interesting to learn if the experience
obtained from designing ALDH1A1 inhibitors would
help to produce ALDHI1A1 specific activators for the
treatment of PD.

Conclusions

Increasing evidence points out the significance of cyto-
toxic DOPAL and other dopamine metabolites in caus-
ing PD-related DA neurodegeneration [47]. ALDH1A1 is
a key enzyme that irreversibly oxidizes DOPAL into less
toxic DOPAC [20]. The presence of ALDH1Al in a
subpopulation of SNpc DA neurons not only defines a
neuronal subtype selectively susceptible in PD, but also
opens a new window to further characterize the con-
nectivity and functionality of this important group of
neurons in dopaminergic transmission [16]. Therefore,
elucidation of the molecular and pathophysiological
properties of these ALDH1A1-positive SNpc DA neurons
may provide major advancement on our current under-
standing of the pathogenic mechanism of PD-related
neuronal loss and lead to better treatment of the disease.
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